
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Study from microcosms and mesocosms reveals <i>Escherichia coli</i> removal in high rate algae ponds during domestic wastewater treatment is primarily caused by dark decay
While high rate algal ponds (HRAPs) can provide efficient pathogen removal from wastewater, the mechanisms involved remain unclear. To address this knowledge gap, the mechanisms potentially causing Escherichia coli (E. coli) removal during microalgae-based wastewater treatment were successively assessed using laboratory microcosms designed to isolate known mechanisms, and bench scale assays performed in real HRAP broth. During laboratory assays, E. coli decay was only significantly increased by alkaline pH (above temperature-dependent thresholds) due to pH induced toxicity, and direct sunlight exposure via UV-B damage and/or endogenous photo-oxidation. Bench assays confirmed alkaline pH toxicity caused significant decay but sunlight-mediated decay was not significant, likely due to light attenuation in the HRAP broth. Bench assays also evidenced the existence of uncharacterized ?dark? decay mechanism(s) not observed in laboratory microcosms. To numerically evaluate the contribution of each mechanism and the uncertainty associated, E. coli decay was modelled assuming dark decay, alkaline pH induced toxicity, and direct sunlight-mediated decay were independent mechanisms. The simulations confirmed E. coli decay was mainly caused by dark decay during bench assays (48.2?89.5% estimated contribution to overall decay at the 95% confidence level), followed by alkaline-pH induced toxicity (8.3?46.5%), and sunlight-mediated decay (0.0?21.9%).

» Author: Paul Chambonniere, John E. Bronlund, Benoit Guieysse
» Reference: https://doi.org/10.1371/journal.pone.0265576
» Publication Date: 17/03/2022
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
