In this section, you can access to the latest technical information related to the FUTURE project topic.

A coupled plasticity-damage model of K418 nickel-based superalloy with pressure and temperature dependence

The issue of containment stems from the aero-engine field, and there is little research in the turbocharger field. In order to reduce the number of tests, development cycle and cost, it is necessary to predict the burst speed of the turbine accurately. In response to this problem, a coupled plasticity-damage model is developed for turbine materials according to the stress state and operating temperature of the turbine. The effect of stress triaxiality, temperature are considered in the plastic constitutive and the failure criterion. The stress update algorithm of plasticity-damage model is given. According to the operating temperature and stress state of the turbine, the experimental scheme of K418 nikel-base superalloy is designed to calibrate the plasticity-damage model. Finally, the coupled plasticity-damage model is verified by the specimens with the notch radius R6 at 550??C and 600??C. The results show that the maximum error of proposed model is about 7.3%, which is better than the 14.2% prediction error of the constitutive model without any corrections. Moreover, the failure displacement can be predicted by the proposed constitutive model (the maximum error is about 8.2%), which is beyond the ability of traditional model. The location of failure initiation, fracture pattern in numerical studies have also showed close correspondence to the experimental results.

» Author: Bin Li, Yi Cui, Shuo Liu, Rining Huang, Yan Fu, Zhanming Ding

» Publication Date: 01/06/2022

» More Information

« Go to Technological Watch



AIMPLAS Instituto Tecnológico del Plástico

C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN

PHONE

(+34) 96 136 60 40

EMAIL

Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es