AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
A coupled plasticity-damage model of K418 nickel-based superalloy with pressure and temperature dependence
The issue of containment stems from the aero-engine field, and there is little research in the turbocharger field. In order to reduce the number of tests, development cycle and cost, it is necessary to predict the burst speed of the turbine accurately. In response to this problem, a coupled plasticity-damage model is developed for turbine materials according to the stress state and operating temperature of the turbine. The effect of stress triaxiality, temperature are considered in the plastic constitutive and the failure criterion. The stress update algorithm of plasticity-damage model is given. According to the operating temperature and stress state of the turbine, the experimental scheme of K418 nikel-base superalloy is designed to calibrate the plasticity-damage model. Finally, the coupled plasticity-damage model is verified by the specimens with the notch radius R6 at 550??C and 600??C. The results show that the maximum error of proposed model is about 7.3%, which is better than the 14.2% prediction error of the constitutive model without any corrections. Moreover, the failure displacement can be predicted by the proposed constitutive model (the maximum error is about 8.2%), which is beyond the ability of traditional model. The location of failure initiation, fracture pattern in numerical studies have also showed close correspondence to the experimental results.
» Author: Bin Li, Yi Cui, Shuo Liu, Rining Huang, Yan Fu, Zhanming Ding
» Publication Date: 01/06/2022
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es