AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Real-time data-driven fault diagnosis of proton exchange membrane fuel cell system based on binary encoding convolutional neural network
The performance of proton exchange Membrane fuel cell (PEMFC) fault diagnosis system plays an important role in normal operation of PEMFC. Therefore, a new fault diagnosis algorithm based on binary matrix encoding neural network called BinE-CNN is proposed. In BinE-CNN, high-dimensional features are extracted through binary encoding, and the feature maps are transferred to a convolutional neural network (CNN) to realize seven-category fault classification. For development of BinE-CNN, a PEMFC model is modeled to generate simulative datasets. Simulative test precision and Frames per second (FPS) of BinE-CNN have reached respectively 0.973 and 999.8 (better than support vector machines (SVM), long short-term memory neural network (LSTM), etc.). In experimental verification section, fault datasets are collected during bench test. After that, BinE-CNN is deployed on vehicle control unit (VCU) to verify its engineering value (real-time and precision). The result meet both requirements, with time cost of 96.15?ms and precision of 0.931.
» Author: Su Zhou, Yanda Lu, Datong Bao, Keyong Wang, Jing Shan, Zhongjun Hou
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es