
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Real-time data-driven fault diagnosis of proton exchange membrane fuel cell system based on binary encoding convolutional neural network
The performance of proton exchange Membrane fuel cell (PEMFC) fault diagnosis system plays an important role in normal operation of PEMFC. Therefore, a new fault diagnosis algorithm based on binary matrix encoding neural network called BinE-CNN is proposed. In BinE-CNN, high-dimensional features are extracted through binary encoding, and the feature maps are transferred to a convolutional neural network (CNN) to realize seven-category fault classification. For development of BinE-CNN, a PEMFC model is modeled to generate simulative datasets. Simulative test precision and Frames per second (FPS) of BinE-CNN have reached respectively 0.973 and 999.8 (better than support vector machines (SVM), long short-term memory neural network (LSTM), etc.). In experimental verification section, fault datasets are collected during bench test. After that, BinE-CNN is deployed on vehicle control unit (VCU) to verify its engineering value (real-time and precision). The result meet both requirements, with time cost of 96.15?ms and precision of 0.931.

» Author: Su Zhou, Yanda Lu, Datong Bao, Keyong Wang, Jing Shan, Zhongjun Hou
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
