
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Performance of an oxygen-consuming inerting system for an aircraft fuel tank with RP-3 aviation fuel in flight
Aircraft fuel tank inerting system is an important guarantee for flight safety. A novel oxygen-consuming inerting system-3CIS (low-temperature controllable oxygen-consuming catalytic inerting system) was proposed and studied with RP-3 aviation fuel. Based on the designed inerting system, the mathematical model of the system in flight was established based on the conservation law of mass and energy. The system performance under different flight conditions was firstly analyzed, and the effects of the initial fuel loading, fan flow rate and preheating temperature on the system performance were studied. Meanwhile, a test bench was built to verify the correctness of the established model. The following conclusions can be drawn from the results: The 3CIS can reduce the oxygen concentration in the fuel tank quickly to prevent fires and suppress explosions. What's more, the inerting time is the longest when the fuel tank is initially empty if all other system conditions are the same. Therefore, it is suggested the no-load state should be used for the system parameters design for the purpose of maximum safety. As for the influence of key parameters on system performance, the inerting rate increases with the increase of fan suction flow and preheating temperature, and low fan flow rate during the climb and cruise stages and high fan flow rate during descent are suggested for the control system designing. Finally, a regenerator is recommended when designing the system since it can effectively reduce the preheating power and cooling power of the system.

» Author: Xiaotian Peng, Hongming Wang, Long Huang, Guotian Liu, Chenchen Wang, Shiyu Feng
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
