AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Discovery of a novel and potent inhibitor with differential species-specific effects against NLRP3 and AIM2 inflammasome-dependent pyroptosis
The NLRP3 inflammasome, which regulated a proinflammatory programmed cell death form termed pyroptosis, is involved in the pathological process of various human diseases, such as multiple sclerosis, type 2 diabetes, and gout. Thus, compounds inhibiting activation of the NLRP3 inflammasome can be promising treatments for these diseases. In this study, we conducted a phenotypic screening against NLRP3-dependent pyroptosis and discovered the hit compound 1, which showed moderate antipyroptotic activity. Chemistry efforts to improve potency of 1 resulted in a novel compound 59 (J114), which exhibited a half-maximal inhibitory concentration (IC50) of 0.077???0.008??M against cell pyroptosis. Interestingly, unlike all pyroptosis inhibitors currently reported, the activity of J114 showed significant differences in human- and mouse-derived cells. The IC50 of J114-mediated inhibition of IL-1? secretion by human THP-1 macrophages was 0.098??M, which was nearly 150-fold and 500-fold more potent than that of J774A.1 (14.62??M) and bone marrow-derived macrophages (BMDMs) (48.98??M), respectively. Further studies showed that J114 displayed remarkable inhibitory activity against NLRP3- and AIM2-but not NLRC4-dependent activation of caspase-1 and the release of IL-1? in human THP-1 macrophages. Mechanistically, J114 disturbed the interaction of NLRP3 or AIM2 with the adaptor protein ASC and inhibited ASC oligomerization. Overall, our study identified a unique molecule that inhibits NLRP3 and AIM2 inflammasome activation and has species differences, which is worthy of further research to understand the differential regulation of the NLRP3 and AIM2 inflammasomes in humans and mice.
» Author: Yan Jiao, Jinshan Nan, Bo Mu, Yun Zhang, Nenghua Zhou, Shunhua Yang, Shanshan Zhang, Wanting Lin, Falu Wang, Anjie Xia, Zhixing Cao, Pei Chen, Zhiling Pan, Guifeng Lin, Shulei Pan, Huachao Bin, Linli Li, Shengyong Yang
» Publication Date: 15/03/2022
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es