
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Nanoarchitectonics of CdS/ZnSnO3 heterostructures for Z-Scheme mediated directional transfer of photo-generated charges with enhanced photocatalytic performance
The construction of heterostructure is an effective strategy to synergetically couple wide-band-gap with the narrow-band-gap semiconductor with a mediate optical property and charge transfer capability. Herein, the Z-Scheme CdS/ZnSnO3 (CdS/ZSO) heterostructures were constructed by anchoring CdS nanoparticles on the surface of double-shell hollow cubic ZnSnO3 via the hydrothermal method. The direct recombination of excited electrons in the conduction band (CB) of ZSO and holes in the valence band (VB) of CdS via d-p conjugation at the interface greatly accelerated the internal electric field (IEF). The transfer mode follows the Z-Scheme mechanism, where CdS/ZSO synergistically facilitates the efficient charges transfer from CdS to ZnSnO3 through the intimate interface. Here, ZnSnO3 and CdS serve as an oxidation photocatalyst (OP) and reduction photocatalyst (RP), respectively. Thus, it can promote synergistically the oxidation half-reaction and reduction half-reaction of H2 evolution. The density-functional theory (DFT) calculation further confirms the charges transfer from CdS to ZnSnO3. The hydrogen evolution of 5% CdS/ZSO heterostructure reached 1167.3??mol?g?1, which was about 8 and 3 folds high compared to pristine ZSO (141.9??mol?g?1) and CdS (315.5??mol?g?1), during 3?h of reaction respectively. Furthermore, the CdS/ZSO heterostructures could suppress the photo corrosion of CdS, resulting in its high stability. This work is expected to enlighten the rational design of heterostructure for OP and RP to promote the hybrid heterostructures photocatalytic H2 evolution.

» Author: Yingxian Wang, Chunming Yang, Yuanyuan Zhang, Li Guo, Yu Wang, Ge Gao, Feng Fu, Bin Xu, Danjun Wang
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
