
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Research progress on the self-ignition of high-pressure hydrogen discharge: A review
As one of the most promising fossil energy substitutes, hydrogen energy is receiving increasing attention, and it has been greatly developed in recent years. However, hydrogen safety issues limit the large-scale application of hydrogen energy. Since 1922, the issue of self-ignition of high-pressure hydrogen discharge has gradually become the focus of attention of scholars in the field of hydrogen energy. Particularly fruitful research results have been obtained in the past 20 years, showing that the minimum discharge pressure of hydrogen self-ignition is approximately 2?MPa. In particular, the discharge tube shape and bursting disc rupture have a significant effect on the characteristics of hydrogen self-ignition. Moreover, the study of the hydrogen self-ignition mechanism under special working conditions has been extended by shock-induced ignition theory. Initial conditions mainly affect the critical pressure of hydrogen self-ignition by changing the formation, development and propagation of shock waves. Finally, the deficiencies and future research trends in research methods, self-ignition characteristics, and dynamic mechanisms are analysed.

» Author: Shangyong Zhou, Zhenmin Luo, Tao Wang, Minyao He, Ruikang Li, Bin Su
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
