In this section, you can access to the latest technical information related to the FUTURE project topic.

Plastic waste as a valuable resource: strategy to remove heavy metals from wastewater in bench scale application

Single-use plastic waste is gradually considered a potential material for circular economy. Ion exchange resin obtained from polystyrene waste by sulfonating with H2SO4 was used for heavy metal removal from electroplating wastewater. Batch mode experiments of Cu2+, Zn2+, and Cd2+ were carried out to determine effect of pH, initial concentration, equilibrium time, and the isotherm and kinetic parameters; the stability of the resin in continuous operation was then evaluated. Finally, the longevity of the resin after being exhausted was explored. The results indicated that at pH 6, a pseudo-second-order kinetic model was applicable to describe adsorption of studied heavy metals by sulfonated polystyrene with adsorption capacities of 7.48?mg Cu2+/g, 7.23?mg Zn2+/g, and 6.50?mg Cd2+/g, respectively. Moreover, the ion exchange process between sulfonated polystyrene resin and Cu2+, Zn2+, Cd2+ ions followed the Langmuir isotherm adsorption model with R2 higher than 96%. The continuous fixed-bed column in conditions of a sulfonated polystyrene mass of 500?g, and a flow rate of 2.2?L/h was investigated for an influent solution with known initial concentration of 20?mg/L. Thomas and Yoon-Nelson models were tested with regression analysis. When being exhausted, the sulfonated polystyrene was regenerated by NaCl in 10?min with ratio 5?mL of NaCl 2?M per 1?g saturated resins. After 4 times regeneration, the heavy metal removal efficiency of sulfonated polystyrene was reduced to 50%. These aforementioned results can figure out that by sulfonating polystyrene waste to synthesize ion exchanging materials, this method is technically efficient and environmentally friendly to achieve sustainability.

» Publication Date: 07/02/2022

» More Information

« Go to Technological Watch



AIMPLAS Instituto Tecnológico del Plástico

C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN

PHONE

(+34) 96 136 60 40

EMAIL

Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es