
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Enhancement of visible light-driven hydrogen production over zinc cadmium sulfide nanoparticles anchored on BiVO4 nanorods
Photocatalytic water splitting to produce H2 is a promising technology for clean energy generation. However, the use of expensive noble metals, toxicity, low charge separation efficiency and wide band gap of semiconductors hampering the widespread commercialization. Herein, we showed the potential of combining BiVO4 nanorods with ZnCdS forming a hetero-structure which extend the spectral responsive range, separate the charge carriers effectively and enhances photocatalytic activity compared to single-component materials. The two components of hetero-structure forms an interface contact which also mitigate the problems of lower conduction band position of BiVO4 and fast recombination of charge carriers of ZnCdS. The BiVO4?ZnCdS hetero-structure was studied through surface morphology, crystallization properties, elemental analysis and optical properties. Under visible light irradiation, the BiVO4?ZnCdS heterostructure produced 152.5??mol?g?1 h?1 hydrogen from water splitting, which was much higher than that of the individual components and stability of the hydrogen production was observed in three consecutive cycles. The as-obtained heterostructure showed improved visible light harvesting ability, prolong life of charges carriers and charge separation efficiency and Z-scheme mechanism features which results in enhanced photocatalytic activity for water splitting.

» Author: Muhammad Imran, Ammar Bin Yousaf, Muhammad Farooq, Peter Kasak
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
