AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Preparation of hollow-fiber nanofiltration membranes of high performance for effective removal of PFOA and high resistance to BSA fouling
Nanofiltration (NF) process has become one of the most promising technologies to remove micro-organic combined water pollution. Developing a NF membrane material with efficient separation for perfluorooctanoic acid (PFOA) combined pollution is highly desired, this manuscript targets this unmet need specifically. In this work, hydrophilic SiO2 nanoparticles with various contents blended with carboxylic multiwalled carbon nanotube were used to modify poly (m- phenylene isophthal amide) (SiO2/CMWCNT/PMIA) hollow fiber NF membrane. The modified membrane with 0.1 wt% SiO2 doping exhibits way better fouling resistance with irreversible fouling ratio decreased dramatically from 18.7% to 2.3%, and the recovery rate of water flux increases significantly from 81.2% to 97.7%. The separation experiment results had confirmed that the modified membrane could improve the rejection from 97.2% to 98.6% for perfluorooctanoic acid (PFOA) and its combined pollution with bovine serum albumin (BSA). It is clear that this reported SiO2/CMWCNT/PMIA hollow fiber NF membrane potentially could be applied in water treatment. This research also provides a theoretical basis for efficiently removal of PFOA and its combined pollution by NF membrane.
» Author: Wenjing Tang, Yunyi Meng, Bin Yang, Dongyu He, Yan Li, Bojun Li, Zheming Shi, Changwei Zhao
» Publication Date: 01/12/2022
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es