AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Anode-cathode interchangeable strategy for in situ reviving electrocatalysts? critical active sites for highly stable methanol upgrading and hydrogen evolution reactions
Surface re-construction was a common phenomenon for non-oxide compound electrocatalysts in anodic oxidation reaction in alkaline electrolyte but surface deactivation arising from excessive oxidation/hydroxylation was critical hindrance to the long-term stability. Herein, a unique anode-cathode interchangeable electrocatalysis strategy is proposed for methanol upgrading reaction (MUR) and hydrogen co-generation in membrane-free electrolyzer. A periodical electrolysis is taken place for the Ni3S2/CNTs electrode at positive/negative currents over time. Compared with the traditional chronopotentiometry mode, the MUR-HER coupled reactions by periodically switching anode/cathode per hour present an excellent long-term stability at high current densities of ??100?mA?cm?2, in which the Faradaic efficiencies for both H2 and value-added formate are greater than 95%. Substantial experimental results and deep theoretical DFT studies signify that the successful application of this strategy is mainly due to the reversible modulation of oxidation/hydroxylation status on Ni3S2 surface, which effectively prevent the surface active structures of electrocatalysts from over-oxidation.
» Author: Bin Zhao, Chenyu Xu, Mohsen Shakouri, Renfei Feng, Yu Zhang, Jianwen Liu, Lei Wang, Jiujun Zhang, Jing-Li Luo, Xian-Zhu Fu
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es