In this section, you can access to the latest technical information related to the FUTURE project topic.

Insight into the role of Fe on catalytic performance over the hydrotalcite-derived Ni-based catalysts for CO2 methanation reaction

A series of Fe modified hydrotalcite-derived Ni-based catalysts (Ni3Fex-calc) were synthesized to evaluate the effect of Fe on CO2 methanation performance over Ni3-calc catalyst. The results showed that Ni3?Fe0.5-calc had superior catalytic activity with 78% CO2 conversion rate at 200??C. The addition of moderate amount of Fe can effectively improve the reducibility, enrich the medium basic sites of Ni3-calc catalyst, and further facilitate the adsorption and activation of CO2. This resulted in the outstanding low-temperature CO2 methanation activity, as well as the enhanced resistance of carbon deposition. In-situ DRIFTS results indicated that the CO2 methanation reaction mechanism involved a progressive hydrogenation of carbonate and formate species to methane route. The formate species was the main intermediates during CO2 methanation. The introduction of Fe could significantly accelerate the hydrogenation rate of carbonates and formate species.

» Author: Liangtao Yin, Xiying Chen, Menghan Sun, Bin Zhao, Jianjun Chen, Qiulin Zhang, Ping Ning

» More Information

« Go to Technological Watch



AIMPLAS Instituto Tecnológico del Plástico

C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN

PHONE

(+34) 96 136 60 40

EMAIL

Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es