In this section, you can access to the latest technical information related to the FUTURE project topic.

Recovering metal ions from oxalic acid leaching palygorskite-rich clay wastewater to fabricate layered mixed metal oxide/carbon composites for high-efficient removing Congo red

This study developed a sustainable way to transform metallic residues in wastewater and spent adsorbents that adsorbed organic pollutants into novel high-efficiency adsorbents to treat water pollution again. The metal ions recovered from oxalic acid leaching palygorskite-rich clay wastewater was used to construct the hydrotalcite-like composites, after adsorbing organic pollutants, which was calcined and carbonized to convert into the mixed metal oxide/carbon composites (MMO/Cs). The fabricated MMO/Cs showed outstanding adsorption performance for the anionic azo dye Congo Red (CR). Especially, the MMO/C2 with the M2+/M3+ molar ratio of 2, which adjusted by supplementing Mg2+, had ultra-high adsorption capacity and ultra-clean removal efficiency for CR. The adsorption capacity was as high as 3303?mg/g, and only 0.5?g/L MMO/C2 dosing treatment for 6?h could completely decolor and remove the 2000?mg/L CR aqueous solution. Moreover, MMO/Cs exhibited the ability to simultaneous remove CR and Methylene blue (MB) mixed dye contaminants, and demonstrated the excellent recyclability. This work provides a promising method for the high-value conversion of waste resources and the synthesis of high-efficiency adsorbents.

» Author: Yushen Lu, Hui Yu, Yongfeng Zhu, Bin Mu, Aiqin Wang

» More Information

« Go to Technological Watch



AIMPLAS Instituto Tecnológico del Plástico

C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN

PHONE

(+34) 96 136 60 40

EMAIL

Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es