
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Electron-rich/poor reaction sites enable ultrafast confining Fenton-like processes in facet-engineered BiOI membranes for water purification
Heterogeneous Fenton-reaction accomplishes the destruction of pollutants via the oxidation of hydroxyl radicals during water purification. Herein, two facet-engineered (control of different exposed crystal planes) BiOI nanocatalysts (BI-001 and BI-110) as the dual-reaction-center catalysts were loaded on the polyvinylidene fluoride membrane, remarkably accelerating the occurrence of Fenton-reaction and leading to the enhanced degradation of the pollutants in complex water matrices. The degradation efficiency of paracetamol by BI-110 membrane (~96.0%) was significantly higher than that of BI-001 membrane (~26.1%) in catalytic activity. The electron paramagnetic resonance tests and theoretical calculations proved that BI-110 possesses more oxygen vacancies, which acts as the electron-rich sites to trigger the Fenton-reaction. Correspondingly, the pollutants were adsorbed on the electron-poor Bi3+ sites and donate electrons during the degradation process. This study provides a candidate strategy to break the limitations of Fenton reaction advanced oxidation processes for water purification using the tunable facet-engineered BiOI membrane.

» Author: Wei Qu, Cheng Chen, Zhuoyun Tang, Dehua Xia, Dingren Ma, Yajing Huang, Qiyu Lian, Chun He, Dong Shu, Bin Han
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
