AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Molecular mechanism of increasing extracellular polysaccharide production of Paenibacillus mucilaginosus K02 by adding mineral powders
Bacterial polysaccharides are widely applied in a range of products and increasing bacterial polysaccharide production is important commercially. In this study, attapulgite, serpentine, talc, biotite, and hydroxylapatite were used to stimulate extracellular polysaccharide (EPS) production by Paenibacillus mucilaginosus K02. The viscosity, polysaccharides, and proteins in culture medium in shaking flasks were quantified after addition of different minerals to the culture medium, and the molecular mechanism of serpentine on stimulating bacterial EPS synthesis was further revealed by proteomic and metabolomic analysis. The results showed that the viscosity, EPS, and protein contents in the culture were significantly increased by the introduction of minerals. The underlying mechanism for increased EPS production was due to a series of protective strategies of the bacterium against the damage arising from collision and friction caused by mineral powders. That is, bacteria protect and maintain their normal life by synthesis and secretion of excessive EPS, enhancement of oxidation resistance and secretion of various organic acids under these mineral treatments. The results not only show the importance of polysaccharide production for bacteria survival under adverse conditions, but also provide a new way of increasing bacterial production of more EPSs.
» Author: Xiaofang Li, Yangge Yu, Ying Li, Zuoying Yin, Xiuming Liu, Bin Lian
» Publication Date: 01/02/2022
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es