AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Nitrogen and phosphorous Co-Doped Laser-Induced Graphene: A High-Performance electrode material for supercapacitor applications
A versatile and cost-effective strategy is demonstrated to produce N and P co-doped laser-induced graphene (NP-LIG) based on a duplicate laser pyrolysis method. The dopant precursor concentration and laser power significantly affected the surface chemistry and electrochemical performance of the NP-LIG. The NP-LIG optimized with 3?wt% H3PO4 and laser power of 3.5?W (NP3-LIG-3.5) in the second pyrolysis step demonstrated an impressive specific areal capacitance (CA) of 163.6 mF/cm2 at 0.2?mA/cm2 in a three-electrode system where 1?M H2SO4 was used as an aqueous electrolyte. Furthermore, the solid-state NP3-LIG-3.5 supercapacitor (NP3-LIG-SC) assembled with a gel electrolyte (PVA-H2SO4) showed a high CA of 69.7 mF/cm2 at 0.05?mA/cm2, which is 4 and 13 times higher, respectively, than those of N-doped LIG and singly pyrolyzed LIG SCs. In addition, the NP3-LIG-SC exhibited good cycling stability (capacitance retention of 84% after 10,000 cycles), a Coulombic efficiency of approximately 100%, and a high areal energy density of 9.67 ?Wh/cm2. This study proposes a facile method for the fabrication of heteroatom-co-doped LIG electrodes for use in flexible and wearable electronics.
» Author: Mahima Khandelwal, Chau Van Tran, Jung Bin In
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es