AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Construction of interface-engineered two-dimensional nanohybrids towards superb fire resistance of epoxy composites
Interfacial interaction played a crucial role in the performance of nanofiller-reinforced polymer composites. Here, an interface-engineered strategy was adopted to establish the strong interfacial linkage between phosphorus-doped cerium oxide (P-CeO2) and EP via introducing polyaniline (PANI) coating, and then endow EP composites with superb fire resistance. The as-prepared P-CeO2@PANI nanohybrids were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), thermogravimetry analysis (TGA) and scanning electron microscopy (SEM), respectively. Subsequently, P-CeO2@PANI nanohybrids were incorporated into EP matrix to probe their influences on the thermal properties, flame retardancy and mechanical properties of EP composites. The coated PANI could strengthen the interfacial adhesion between P-CeO2 and EP by covalent bonding, achieving a good dispersion state in EP matrix. Moreover, the introduction of P-CeO2@PANI nanohybrids led to the decreasing peak heat release rate (PHRR), total heat release (THR), peak CO production rate (PCO) and peak CO2 production rate (PCO2), with the reduction of 21%, 26%, 40% and 31%, respectively. Additionally, the introduction of P-CeO2@PANI enhanced cross-linking density and dynamic mechanical properties of EP composites. In conclusion, the reinforced interfacial interactions promoted the dispersion of interface-engineered nanofiller, which together with the lamellar barrier effect and catalytic effect of P-CeO2@PANI hybrids, contributed to the enhancements of the thermal properties, fire safety and mechanical properties of EP composites.
» Author: Kaili Gong, Lian Yin, Keqing Zhou, Xiaodong Qian, Congling Shi, Zhou Gui, Bin Yu, Lijun Qian
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es