AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
High strength, high toughness, low thermal conductivity, and appropriate expansion capacity of hybrid organic/inorganic nanocomposites used for thermal protection
A thermal protection material (TPM) was prepared using Al2O3-phosphate, expanded aluminosilicate, and phenolics through compression molding and the gradient heating reaction technique, and the effect of the high-temperature treatment on the properties of the composites were investigated. Scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy were used to analyze the structures and compositions of the composites. After the high-temperature treatment, the composites exhibited increased porosity, decreased density, and generated SiC particles with high strength and temperature resistance. The prepared composites have high compressive strength and compression deformation ability of the bending point. Thermogravimetric analysis, coefficient of thermal conductivity measurements, and expansion analysis were carried out to evaluate the thermal properties of the composites, and the effects of the preparation conditions on the thermal properties of the composites were investigated. The results showed that the prepared composites exhibited complete morphology, excellent high-temperature resistance, high compressive strength and toughness, and low thermal conductivity before and after the high-temperature treatment at 1000??C, and hence showed great potential for future thermal protection applications.
» Author: Hai Long Liu, Bin Xiao Wei, Xin Jing Wei, Xiao Tong Yi, Si Zhe Tang, Yu Dong Huang, Jin Mei He, Chao Wang
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es