AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Water uptake and interfacial shear strength of carbon/glass fiber hybrid composite rods under hygrothermal environments: effects of hybrid modes
The hygrothermal aging of fiber reinforced polymer (FRP) composite rod served as bridge cables played a key role on the long-term service performances. In the present paper, two types of pultruded carbon/glass fiber reinforced epoxy hybrid composite rods, one with uniformly dispersed carbon and glass fibers, and the other with glass fiber shell and carbon fiber core, were investigated on the water uptake and interface shear strength. The aging condition was immersion in deionized water at 40 ?C, 60 ?C and 80 ?C. Interface shear strength degradation mechanism was revealed by thermal analysis and microstructure analysis. It was found that the water absorption of two types of hybrid rods represented the two-stage behavior. For the rod of uniform fiber dispersion, more water uptake in the second stage occurred compared to that of the shell/core rod, which was attributed to the resin rich area and interface debonding of fiber/resin. Long-term hygrothermal exposure led to a remarkable degradation in the interfacial shear strength of the rods, up to 17.5% ? 42.1%. The resin plasticization and interface debonding were the main factors contributed to the strength degradation. Based on the Arrhenius equation, the long-term life prediction of the interfacial shear strength under two typical bridge service environments was conducted to the design guideline of hybrid rods in the bridge engineering.
» Author: Rui Guo, Guijun Xian, Chenggao Li, Bin Hong, Xiangyu Huang, Meiyin Xin, Shengde Huang
» Publication Date: 01/11/2021
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es