
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Genome-centric investigation of anaerobic digestion using sustainable second and third generation substrates
Biogas production through co-digestion of second and third generation substrates is an environmentally sustainable approach. Green willow biomass, chicken manure waste and microalgae biomass substrates were combined in the anaerobic digestion experiments. Biochemical methane potential test showed that biogas yields of co-digestions were significantly higher compared to the yield when energy willow was the sole substrate. To scale up the experiment continuous stirred-tank reactors (CSRTs) are employed, digestion parameters are monitored. Furthermore, genome-centric metagenomics approach was employed to gain functional insight into the complex anaerobic decomposing process. This revealed the importance of Firmicutes, Actinobacteria, Proteobacteria and Bacteroidetes phyla as major bacterial participants, while Methanomicrobia and Methanobacteria represented the archaeal constituents of the communities. The bacterial phyla were shown to perform the carbohydrate hydrolysis. Among the representatives of long-chain carbohydrate hydrolysing microbes Bin_61: Clostridia is newly identified metagenome assembled genome (MAG) and Bin_13: DTU010 sp900018335 is common and abundant in all CSTRs. Methanogenesis was linked to the slow-growing members of the community, where hydrogenotrophic methanogen species Methanoculleus (Bin_10) and Methanobacterium (Bin_4) predominate. A sensitive balance between H2 producers and consumers was shown to be critical for stable biomethane production and efficient waste biodegradation.

» Author: Roland Wirth, Bernadett Pap, D?nes Dudits, Bal?zs Kakuk, Zolt?n Bagi, Prateek Shetty, Korn?l L. Kov?cs, Gergely Mar?ti
» Publication Date: 20/09/2021
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
