AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Facile and scalable synthesis of heterostructural NiSe2/FeSe2 nanoparticles as efficient and stable binder-free electrocatalyst for oxygen evolution reaction
Oxygen evolution reaction (OER) is a rate-limiting step in electrocatalytic water splitting due to its sluggish reaction kinetics. Therefore, it is still challengeable to develop an inexpensive and efficient OER catalyst via a facile and scalable synthesis method. To address such issues, herein, we present a facile and scalable approach to prepare ultrathin NiSe2/FeSe2 heterostructural nanoparticles in-situ grown on NiFe foam (NFS/NFF), which can be employed as a self-supported non-noble metal-based catalyst for OER. The NFS/NFF catalyst delivers outstanding OER performance with a small Tafel slope of 57.07?mV dec?1 and a low overpotential of 274?mV at 40?mA?cm?2 and displays terrific long-term stability, surpassing the performance of commercial RuO2 and single component NiSe2/NF catalyst. The results of XPS manifest that there is a strong heterointerface interaction between NiSe2 and FeSe2. In addition, combined with density functional theory (DFT) calculations, we further confirmed that the synergistic interface effect between NiSe2 and FeSe2 reduces the value of the Gibbs free energy of oxygen-containing intermediates as determining step (RDS) from 3.15?eV (NiSe2) to 2.41?eV (NiSe2/FeSe2 heterostructures), leading to excellent OER performance. This work provides a novel strategy to rationally design and fabricate selenide-based heterostructural nanoparticles via a facile method, which can extend to prepare other non-precious OER catalysts with high efficiency and long-term stability.
» Author: Xin Chen, Xinqiang Wang, Xiaojuan Zhang, Dawei Liu, Katam Srinivas, Fei Ma, Bin Wang, Bo Yu, Qi Wu, Yuanfu Chen
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es