AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Low-dose exposure to black carbon significantly increase lung injury of cadmium by promoting cellular apoptosis
Particulate matter 2.5 (PM2.5) has adverse biological effects on major living organs in the body, including lungs. The complex composition of PM2.5, including carbon black and heavy metals, cause toxic effects to the lung. Nonetheless, there exists considerable knowledge gaps regarding the impact of carbon black (CB) on environmental health and safety (EHS). Thus far, the synergistic effects of CB have not gained much attention in past decades. Here, we showed that combined exposure of CB and Cadmium (Cd) enhance the cytotoxicity by altering the state of cell membrane. Specially, CB caused cell membrane collapse and increased the permeability of cells, and remarkedly enhanced the metal Cd toxicity. Furthermore, upon pre-treatment sublethal-dose CB, the increased intracellular Cd brought about a significantly amount of lactate dehydrogenase (LDH) and high expression of metallothionein-1 (MT-1) in human lung epithelial cell line (BEAS-2B) cells, and ultimately resulted an increased cellular toxicity. The lung of mice exposed CBs and Cd presented remarkably inflammation than Cd alone. Mechanistic exploration deciphered that CB pre-treatment triggered cell damage via apoptosis due to Cd exposure. Collectively, our findings reveal a novel path for understanding the impact of CB on EHS with its synergistic effects, through which nanomaterials might exert detrimental effects on organisms.
» Author: Lingjuan Wang, Shanyu Bao, Xiaolong Liu, Fan Wang, Jinwei Zhang, Pengyu Dang, Fengli Wang, Bin Li, Yi Lin
» Publication Date: 01/11/2021
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es