
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Gravity driven ice-templated oriental arrangement of functional carbon fibers for high in-plane thermal conductivity
Polymer-based thermal conductivity composites composed with nanoscale fillers are promising thermal conductors to dissipate accumulated heat of integrated circuits in electronic devices, while interfacial thermal resistance (ITR) and disordered conductive pathways caused by the size effect of fillers limit their heat transfer performance. Herein, gravitational-driven ice-templated oriental arrangement of ionic liquid (IL) modified microscale carbon fibers (CFs) were conducted to improve thermal conductivity via both weakening phonons scattering effect and forming horizontal orientation heat transfer pathways in composites. The cation-? interaction between CFs and the hydrogen bonding between CFs and epoxy resin induced by IL effectively reduced ITR in composites. As a result, the composite including 22.3?vol% CFs reached a maximum in-plane thermal conductivity of 7.98?W?m?1 K?1. The mechanical properties of the composite were also developed. This insight provides a strategy for the construction of high-performance composites with potential applications in thermal management materials.

» Author: Bin Wu, Jiaojiao Li, Xu Li, Gang Qian, Peng Chen, Ru Xia, Jiasheng Qian
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
