AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Hollow and substrate-supported Prussian blue, its analogs, and their derivatives for green water splitting
To meet the current energy needs of society, the highly efficient and continuous production of clean energy is required. One of the key issues facing the green hydrogen evolution is the construction of efficient, low-cost electrocatalysts. Prussian blue (PB), Prussian blue analogs (PBAs), and their derivatives have tunable metal centers and have attracted significant interest as novel photo- and electrochemical catalysts. In this review, recent research progress into PB/PBA-based hollow structures, substrate-supported nanostructures, and their derivatives for green water splitting is discussed and summarized. First, several remarkable examples of nanostructured PB/PBAs supported on substrates (copper foil, carbon cloth, and nickel foam) and hollow structures (such as single-shelled hollow boxes, open hollow cages, and intricate hollow structures (multi?shell and yolk?shell)) are discussed in detail, including their synthesis and formation mechanisms. Subsequently, the applications of PB/PBA derivatives ((hydr)oxides, phosphides, chalcogenides, and carbides) for water splitting are discussed. Finally, the limitations in this research area and the most urgent challenges are summarized. We hope that this review will stimulate more researchers to develop technologies based on these intricate PB/PBA structures and their derivatives for highly efficient, green water splitting.
» Author: Jing-Yi Xie, Bin Dong
» Publication Date: 01/11/2021
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es