
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Consecutive soybean (<i>Glycine max</i>) planting and covering improve acidified tea garden soil
Planting soybeans (Glycine max (L.) Merr.) in tea gardens decreased soil pH in theory but increased it in practice. This controversy was addressed in this study by treating the tea garden soil consecutively with different parts of a soybean cover crop: aboveground soybean (ASB) parts, underground soybean (USB) root residues, and the whole soybean (WSB) plants. In comparison with the control, the soil pH increased significantly after the third ASB and WSB treatments, but there was no significant change in the soil pH in the USB treatment. Concordantly, the soil exchangeable acidity decreased significantly and the soil exchangeable bases increased significantly in the ASB and WSB treatments. The exchangeable acidity increased in the USB treatment, but the amount of the increased acidity was less than that of the increased bases in the ASB treatment, resulting in a net increase in the exchangeable bases in the WSB treatment. Soybean planting and covering also increased the microbial richness and abundance significantly, which led to significantly more soil organic matters. Exchangeable K+ and Mg2+, and soil organic matters played significantly positive roles and exchangeable Al3+ played negative roles in improving soil pH. Our data suggest that consecutive plantings of soybean cover crop increase the pH of the acidified tea garden soil.

» Author: Shuilian Gao, Peng He, Tianxiu Lin, Haijuan Liu, Bin Guo, Huiling Lin, Yunfei Hu, Qianjie Chen, Ping Xiang, Lifeng Zou
» Reference: https://doi.org/10.1371/journal.pone.0254502
» Publication Date: 13/07/2021
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
