AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
1D/2D carbon-doped nanowire/ultra-thin nanosheet g-C3N4 isotype heterojunction for effective and durable photocatalytic H2 evolution
It is still challenging to design effective g-C3N4 photocatalysts with high separation efficiency of photo-generated charges and strong visible light absorption. Herein, a simple, template-free and ?bottom-up? strategy has been developed to prepare 1D/2D g-C3N4 isotype heterojunction composed of carbon-doped nanowires and ultra-thin nanosheets. The ethanediamine (EE) grafted on melamine ensures the growth of 1D g-C3N4 nanowires with high carbon doping, and the ultra-thin g-C3N4 nanosheets were produced through HCl-assisted hydrothermal strategy. The apparent grain boundary between 2D nanosheets and 1D carbon-doped nanowires manifested the formation of the isotype heterojunction. The built-in electric field provide strong driving force for photogenerated carriers separation. Meanwhile, the doping carbon in g-C3N4 nanowires promotes visible light absorption. As a result, the photocatalytic H2 evolution activity of 1D/2D g-C3N4 isotype heterojunction is 8.2 time that of the pristine g-C3N4, and an excellent stability is also obtained. This work provides a promising strategy to construct isotype heterojunction with different morphologies for effective photocatalytic H2 evolution.
» Author: Bin Yang, Zhongwen Wang, Jiaojiao Zhao, Xiyin Sun, Rongjie Wang, Guangfu Liao, Xin Jia
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es