AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
High performance polyvinylidene fluoride/graphite/multi-walled carbon nanotubes composite bipolar plate for PEMFC with segregated conductive networks
Composite bipolar plates (BPs) are preferred to graphite BPs and metal BPs, in proton exchange membrane fuel cells (PEMFC), due to their pronounced advantages. However, facile and high-efficiency fabrication of high performance composite BPs, remains a challenge. In this study, high performance polyvinylidene fluoride (PVDF)/graphite/multi-walled carbon nanotubes (MWCNTs) composite BPs with segregated conductive network are prepared by structural design and compression molding. Due to the ?brick-mud? structure formed in composite BPs by structural manipulation, its conductivity of low filler content is greatly improved. In addition, segregated synergistic conductive networks are observed in composite BPs after adding MWCNTs. The composite BP (5?wt% MWCNTs and 35?wt% graphite) exhibited electrical conductivity of 161.57?S/cm and area specific resistances of 7.5?m??cm2. Moreover, the composite BPs have good flexural strength, excellent hydrophobicity and corrosion resistance. In summary, our work provides a simple and feasible strategy for manufacturing high performance composite BPs with low fillers.
» Author: Bin Hu, Fu-Lu Chang, Lin-Yi Xiang, Guang-Jian He, Xian-Wu Cao, Xiao-Chun Yin
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es