
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
A novel nonlinear creep model based on damage characteristics of mudstone strength parameters
Mudstone interlayer is a weak layer in rock engineering. When it is subjected to continuous stress higher than its damage threshold, due to the dislocation of particles in mudstone crystals and the expansion of cracks, mudstone strength is gradually damaged and deteriorated and the strain gradually increases, thus accelerating the phenomenon of creep damage. In order to describe the characteristics of the whole process of mudstone aging deformation, based on the damage evolution of strength parameters (cohesion and internal friction coefficient) with stress and time in mudstone creep tests, a novel damage nonlinear viscoelastoplastic body (D-NVPB) is proposed through improving traditional plastic element. D-NVPB describes the nonlinear characteristics of the accelerated creep stage of mudstone. With the element combination method, D-NVPB is connected with the Burgers model in series to form a new nonlinear damage creep model (D-NVEP model). The analysis results of creep characteristics theoretically verified the rationality of the model in describing the instantaneous elasticity, viscoelasticity, and nonlinear viscoplastic characteristics of the complete creep curve of mudstone. With the data obtained in the uniaxial compression creep test of mudstone under the action of a stress level of 14 MPa, based on the Levenberg-Marquardt nonlinear least squares method, the fitting calculation was performed through piecewise fitting and overall fitting. The correlation coefficient was 0.9909, which verified the applicability of the model. The obtained model parameters by the identification were used to predict the mudstone creep curve under the stress levels of 13 MPa and 15 MPa. The good prediction results further verified the feasibility of the model. Compared with the traditional creep model, the D-NVEP model can better describe the nonlinear characteristics of the accelerated creep stage and quantitatively display the strength damage evolution process of rock in the creep failure process.

» Author: Bin Hu, Aneng Cui, Kai Cui, Yang Liu, Jing Li
» Reference: https://doi.org/10.1371/journal.pone.0253711
» Publication Date: 24/06/2021
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
