AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Pickering emulsion stabilized by cellulosic fibers: Morphological properties-interfacial stabilization-rheological behavior relationships
This work aimed to study the stabilization mechanism induced by different morphologies of cellulosic fiber in O/W emulsion. Three types of cellulosic fibers were named squashed cellulose, incompletely nanofibrillated cellulose, and completely nanofibrillated cellulose, respectively. Squashed cellulose acted as barriers between the droplets to stabilize emulsion via depletion flocculation, whereas incompletely nanofibrillated and completely nanofibrillated cellulose formed covering layer via interfacial adsorption and connected adjacent droplets to create the droplet-fiber network structure via bridging flocculation. Differently, completely nanofibrillated cellulose formed the denser covering layer leading to a more stability of droplet. Importantly, it had the higher capacity of bridging flocculation, which can tightly connect the adjacent droplets to form a stronger droplet-fiber 3D network structure. Consequently, in rheological analysis including creep compliance, and dynamic modulus, the corresponding emulsions showed excellent anti-deformation ability and dynamic stability. This study provides practical guidance on the productions of foodstuff and cosmetic.
» Author: Tianzhong Yuan, Jinsong Zeng, Bin Wang, Zheng Cheng, Kefu Chen
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es