In this section, you can access to the latest technical information related to the FUTURE project topic.

Pickering emulsion stabilized by cellulosic fibers: Morphological properties-interfacial stabilization-rheological behavior relationships

This work aimed to study the stabilization mechanism induced by different morphologies of cellulosic fiber in O/W emulsion. Three types of cellulosic fibers were named squashed cellulose, incompletely nanofibrillated cellulose, and completely nanofibrillated cellulose, respectively. Squashed cellulose acted as barriers between the droplets to stabilize emulsion via depletion flocculation, whereas incompletely nanofibrillated and completely nanofibrillated cellulose formed covering layer via interfacial adsorption and connected adjacent droplets to create the droplet-fiber network structure via bridging flocculation. Differently, completely nanofibrillated cellulose formed the denser covering layer leading to a more stability of droplet. Importantly, it had the higher capacity of bridging flocculation, which can tightly connect the adjacent droplets to form a stronger droplet-fiber 3D network structure. Consequently, in rheological analysis including creep compliance, and dynamic modulus, the corresponding emulsions showed excellent anti-deformation ability and dynamic stability. This study provides practical guidance on the productions of foodstuff and cosmetic.

» Author: Tianzhong Yuan, Jinsong Zeng, Bin Wang, Zheng Cheng, Kefu Chen

» More Information

« Go to Technological Watch



AIMPLAS Instituto Tecnológico del Plástico

C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN

PHONE

(+34) 96 136 60 40

EMAIL

Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es