In this section, you can access to the latest technical information related to the FUTURE project topic.

Effect of Polyacrylonitrile Precursor Orientation on the Structures and Properties of Thermally Stabilized Carbon Fiber

The thermal stabilization process of polyacrylonitrile (PAN) precursor fiber was the key step to prepare high-performance carbon fiber. During the thermal stabilization process, the aggregation structure and the reactivity of molecular chains have significant effects on the microstructures and mechanical properties of carbon fiber. In the present paper, the effects of the orientation structure of PAN precursor fiber on the thermal stabilization reaction and the mechanical properties of carbon fiber were experimentally studied. Using multi-dimensional structural and mechanical properties tests, such as XRD, DSC, 13C NMR and Instron machine testing, the crystalline and skeleton structure, exothermic behavior, and tensile properties of PAN precursor fiber with different orientations in the process of thermal stabilization were characterized to reveal the relationship between microstructure evolution and tensile properties. The results showed that the orientation structure of PAN precursor fiber had an obvious effect on the thermal stabilization process and the tensile stress?strain characteristic. When the heat treatment temperature was lower than 200 ?C, the crystallinity and crystallite size of PAN fibers with higher orientation degrees increased significantly. After sufficient thermal stabilization, the original PAN precursor fiber with a higher orientation degree could form more aromatic lamellar structures and showed better regularity. Furthermore, the yield strength and initial modulus of the fibers with a higher orientation degree increased due to the formation of more aromatic rings. The maximum increase in the percentages of yield strength and tensile modulus of the PAN fibers were achieved when the heat-treated temperature was 200 ?C, and the percentage values were 138.4% and 158.7% compared to the precursor without heat-treatment. In addition, the elongation at break of the fibers with a higher orientation degree was also relatively larger.

» Author: Bin Wang

» Reference: doi: 10.3390/ma14123237

» Publication Date: 11/06/2021

» More Information

« Go to Technological Watch



AIMPLAS Instituto Tecnológico del Plástico

C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN

PHONE

(+34) 96 136 60 40

EMAIL

Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es