
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Predicting and optimizing coupling effect in magnetoelectric multi-phase composites based on machine learning algorithm
In this paper, we present a machine learning (ML) method to search for geometric patterns of magnetoelectric multi-phase composites with optimal magnetoelectric coupling properties. The 2D finite element method is used to calculate the coupling coefficients and build the database for the training and testing of ML algorithms. Both the convolution neural network (CNN) and artificial neural network (ANN) algorithms are used as ML algorithms in this work. By investigating the effects of network parameters, such as training data density, iteration number and batch size, we construct the networks with proper parameters and good prediction accuracy. We present the predicted geometric patterns by two methods, CNN and ANN, and compare them with the FEM patterns. Two types of magnetoelectric composites, two -volume fractions of magnetostrictive phase and two system sizes are considered to investigate and improve the prediction efficiency. The presented results show that by using the ML methods, it can well predict the coupling effect and rank optimal patterns. The results also prove the feasibility that by using the ML method, we can accurately predict the coupling performance with very limited data. We aim to predict the optimal patterns instead of the best pattern. Therefore, this work demonstrates the feasibility and offers a new perspective way for the design and optimization of magnetoelectric multi-phase composites by using the ML algorithm.

» Author: Weihao Zhu, Chen Yang, Bin Huang, Yan Guo, Longtao Xie, Yangyang Zhang, Ji Wang
» Publication Date: 01/09/2021
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
