
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Deep-red-emitting Mg2InSbO6:Mn4+ phosphors with a double-perovskite structure for plant-cultivation LEDs: Synthesis and photoluminescence properties
In this study, novel deep-red-emitting Mg2InSbO6:Mn4+ phosphors were prepared through a high-temperature solid-state reaction. The as-prepared phosphors belong to the perovskite structure with the space group of R3? (No.148). The calculated energy gap value of Mg2InSbO6 is ~1.788?eV. Emission spectrum of the Mg2InSbO6:0.3%Mn4+ was obtained under 301?nm excitation, which centered 665?nm due to the 2Eg?4A2g transition. The optimum concentration of Mg2InSbO6:xMn4+ is confirmed to 0.3% mol, and the concentration quenching effect is ascribed to the dipole?dipole interaction. The relative temperature-dependent PL spectra demonstrate that phosphors possess commendable repeatability and high activation energy. The chromaticity shift diagram shows the phosphors have good resistance of color drifting. The Mg2InSbO6:0.3%Mn4+ phosphor has a high color purity of 99.8%. Furthermore, a red light-emitting diode is fabricated with Mg2InSbO6:0.3%Mn4+ phosphor and a 365?nm near-ultraviolet chip. The emission spectrum of the red LED is perfectly overlapped with plant pigments (chlorophyll a and chlorophyll b) absorption spectrum. Thus, Mn4+-activated Mg2InSbO6:Mn4+ phosphors have the potential to apply in plant-cultivation LEDs.

» Author: Yuanyuan Liu, Jing Gao, Wen Shi, Xuyao Feng, Zijing Zhou, Jianxu Wang, Junlan Guo, Ruyi Kang, Bin Deng, Ruijin Yu
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
