AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Life-cycle assessment of two sewage sludge-to-energy systems based on different sewage sludge characteristics: Energy balance and greenhouse gas-emission footprint analysis
Anaerobic digestion and incineration are widely used sewage sludge (SS) treatment and disposal approaches to recovering energy from SS, but it is difficult to select a suitable technical process from the various technologies. In this study, life-cycle assessments were adopted to compare the energy- and greenhouse gas- (GHG) emission footprints of two sludge-to-energy systems. One system uses a combination of AD with incineration (the AI system), whereas the other was simplified by direct incineration (the DI system). Comparison between three SS feedstocks (VS/TS: 57.61 -73.1 ds.%) revealed that the AI system consistently outperformed the DI system. The results of sensitivity analyses showed that the energy and GHG emission performances were mainly affected by VS content of the SS, AD conversion efficiency, and the energy consumption of sludge drying. Furthermore, the energy and GHG emission credit of the two systems increased remarkably with the increase in the VS content of the SS. For the high-organic-content sludge (VS/TS: 55%?80%), the energy and GHG emission credit of the AI system increase with the increase of AD conversion efficiency. However, for the low organic content sludge (VS/TS: 30%?55%), it has the opposite effect. In terms of energy efficiency and GHG performance, the AI system is a good choice for the treatment of high-organic-content sludge (VS/TS>55%), but DI shows superiority over AI when dealing with low organic content sludge (VS/TS
» Author: Renjie Chen, Shijie Yuan, Sisi Chen, Hanlin Ci, Xiaohu Dai, Xiankai Wang, Chong Li, Dianchang Wang, Bin Dong
» Publication Date: 01/01/2022
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es