
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
The effective thermal conductivity of coated/uncoated fiber-reinforced composites with different fiber arrangements
Fiber-reinforced composites are attractive for many applications in energy fields, such as thermal energy storage and building energy-saving. In these applications, their effective thermal conductivity is extremely important; however, research addressing the effect of various parameters on effective thermal conductivity is scarce. In this paper, the influences of different parameters, including volume fraction, aspect ratio, and orientation of fibers, and the thickness of coating layers on the effective thermal conductivity of fiber-reinforced composites, are numerically investigated by the Lattice Boltzmann method. Based on numerous numerical results, a correlation of the effective thermal conductivity is proposed for the composites with fibers randomly distributed in space. It is found that the thermal conductivity of fiber and coating layers are the two most dominant factors which influence the effective thermal conductivity of fiber-reinforced composites. The thickness of the coating layer affects the effective thermal conductivity of composites with fibers randomly distributed in space remarkably, while its effect on the effective thermal conductivity of composites with fibers arranged perpendicular to the heat transfer is negligible. The results of this work could provide important references for the process design and improvement of thermal performance of fiber-reinforced composites.

» Author: Chuan-Yong Zhu, Ze-Kai Gu, Hai-Bo Xu, Bin Ding, Liang Gong, Zeng-Yao Li
» Publication Date: 01/09/2021
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
