AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Growing antifouling fluorinated polymer brushes on polyvinyl alcohol hydrogel surface via g-C3N4@InVO4 catalyzed surface-initiated photo atom transfer radical polymerization
A novel g-C3N4@InVO4 semiconductor catalyzed surface-initiated photo atom transfer radical polymerization without catalysts residues problem has been developed. This method proceeded in N-methyl pyrrolidone/aqueous under atmospheric conditions. To verify the versatility of this method and enhance the antifouling properties of polyvinyl alcohol (PVA) hydrogel, two types of fluorinated polymer brushes (p6F/p13F) were successfully constructed on PVA hydrogel surface instead of the subsurface. The chemical bonds between PVA matrix and fluorinated polymer brushes (p6F/p13F) enhanced the surface cross link density and resulted in an increase of thermal stability and mechanical properties. All fluorinated PVA hydrogels with excellent antifouling properties was able to tackle the biofouling problem in complex environment of the human body. In addition, all fluorinated PVA hydrogels was no cytotoxicity for L929 and NDHF according to ISO 10993.5:2009. g-C3N4@InVO4 catalyzed SI-photoATRP provides a novel surface modification technology for various biological or medical materials in the industrial-scale application.
» Author: Jinsheng Zhou, Yugui Sun, Zixiang Huang, Zhongkuan Luo, Bin Yu, Xianghui Zou, Huiyuan Hu
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es