AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Performance analysis of a novel bifacial solar photothermic and radiative cooling module
Solar energy and universe coldness are two renewable and clean energy constantly sent from outer space to the earth. Solar thermal collectors and radiative coolers respectively harvest heat and cooling energy in this context. However, their static and monofunctional spectral properties mismatch energy demands in regions with large air temperature fluctuations throughout the whole year. In this work, a rotatable bifacial solar photothermic and radiative cooling (PT-RC) module capable of flexibly switch between solar heating and radiative cooling modes is proposed to realize smart thermal management. In the solar heating mode with solar irradiance of 1000?W/m2, the PT-RC module shows 83.3% solar thermal efficiency, which is even slightly higher than that of a typical solar thermal module. In the radiative cooling mode, the PT-RC module reaches up to 69.9?W/m2 net radiative cooling power and 11.7??C temperature reduction. The heat and cooling energy of the PT-RC module throughout a typical day in Hefei city totals 17.7?MJ. This bifacial PT-RC module provides an alternative solution for integrating solar energy and universe coldness and shows potential in flexibly providing heat and cooling energy in different seasons.
» Author: Mingke Hu, Bin Zhao, Xianze Ao, Suhendri, Jingyu Cao, Qiliang Wang, Saffa Riffat, Yuehong Su, Gang Pei
» Publication Date: 15/05/2021
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es