
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Synthesis and characterization of tannic acid pillared bentonite composite for the efficient adsorption of aflatoxins
Tannic acid (TA) is a hydrolysable polyphenol with established antioxidant and antibacterial activity along with its tendency to bind both organic and inorganic ions/molecules. In the present study, the sequestration performance of TA pillared bentonite for various aflatoxins (AFs) including AFB1, AFB2, AFG1 and AFG2 from aqueous solutions and simulated poultry gastrointestinal model solution was studied via adsorption. The adsorbents were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), N2 adsorption-desorption study and X-ray photoelectron spectroscopy (XPS). The reaction conditions including pH, agitation time, initial toxin concentration and temperature were systematically optimized. The Langmuir adsorption capacity of the adsorbent reached to 86, 71, 74 and 149 mg/g for AFB1, AFB2, AFG1 and AFG2 respectively. Adsorption kinetics and thermodynamic studies showed rapid AFs uptake and the exothermicity of the adsorption reaction respectively. Simultaneous removal of AFs by BTA3 revealed their independent and uninterrupted adsorption and the adsorption mechanism of AFs over BTA3 was elaborated with the help of XPS results. The outstanding AFs sequestering capability of BTA3 in aqueous solution and simulated poultry gastrointestinal model can be envisioned of great promise for the remediation of AFs and other hazardous pollutants from food and poultry industrial products.

» Author: Usman Rasheed, Qurat Ul Ain, Muhammad Yaseen, Xiaohua Yao, Bin Liu
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
