In this section, you can access to the latest technical information related to the FUTURE project topic.

Diamond wheel grinding characteristics of 3D orthogonal quartz fiber reinforced silica ceramic matrix composite

Fiber-reinforced silica ceramic matrix composites (SiO2f/SiO2) have gained extensive attention in recent years for its applications in aeronautics field such as radar radome and window. However, the machining properties and mechanism of the material remain unclear. The features and mechanical properties of the material itself have a significant influence on both its machining characteristics and surface integrity. Thus, a full-factor grinding experiment is conducted using a 3D orthogonal SiO2f/SiO2 aiming to obtain its machining characteristics. The effects of grinding parameters and tools on the grinding force, surface roughness, and material damage type are investigated using a dynamometer, Scanning Electron Microscope (SEM), and Acoustic Emission (AE) analysis. The AE frequency band is analyzed, and a semi-analytical force model is established to study the difference between a single grain and wheel grinding. It was found that the changes in surface roughness correlate with the changes in grinding force, with fiber fracture being the main reason behind the increase in grinding force. Finally, the material removal mechanism was studied based on the AE analysis. It was found that the removal mechanism is fiber fracture dominated with matrix crack and debonding, and the primary sources of energy consumption are fiber fracture and friction.

» Author: Bin LIN, Haoji WANG, Jinhua WEI, Tianyi SUI

» More Information

« Go to Technological Watch



AIMPLAS Instituto Tecnológico del Plástico

C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN

PHONE

(+34) 96 136 60 40

EMAIL

Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es