AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Validation of robustness and fuel efficiency of a universal model-based energy management strategy for fuel cell hybrid trains: From analytical derivation via simulation to measurement on test bench
Fuel cell hybrid trains are being commercialized to replace trains powered by combustion engine to reduce carbon dioxide emission without high investment cost in overhead catenaries. In this context, this paper presents a universal model-based strategy for the operation of fuel cell hybrid trains based on adaptive Pontryagin?s minimum principle (APMP). Different from all other work, the implementation of Pontryagin?s minimum principle (PMP) considers the relaxation process due to the resistance-capacitor branches in the batteries to provide a precise reference for the evaluation of the robustness and fuel economy of the APMP-based strategy. Furthermore, a formula to physically estimate the costate is inspired by the offline PMP results and derived by using the energy conservation principle. Moreover, the robustness of the strategy against fuel cell aging, battery aging, inaccurate fuel cell modeling, and deviations introduced through fitting experimental data is investigated through simulation. Compared to the offline results, a maximum 1.5% higher hydrogen consumption is observed by simulation under different aging and uncertain operating conditions. Finally, the effectiveness and the robustness of the strategy are validated through measurement on the test bench at the Center for Mobile Propulsion of the RWTH Aachen University. A maximum of 2.7% more hydrogen consumption is measured compared to the offline PMP results under various conditions of uncertainty.
» Author: Hujun Peng, Hanqing Cao, Steffen Dirkes, Zhu Chen, Kai Deng, Jonas Gottschalk, Cem ?nl?bayir, Andreas Thul, Lars L?wenstein, Dirk Uwe Sauer, Stefan Pischinger, Kay Hameyer
» Publication Date: 01/02/2021
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es