
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Nanoparticle-based amelioration of drought stress and cadmium toxicity in rice via triggering the stress responsive genetic mechanisms and nutrient acquisition
Cadmium and drought are the most destructive of the abiotic stresses with negative consequences in terms of impaired metabolism, restricted nutrient use efficiency and disruptive photosynthesis of plants. The present study investigated the mitigation strategy of both aforementioned stresses by the application of iron oxide (IONPs) and hydrogel nanoparticles (HGNPs) simultaneously probably for the first time. IONPs were biofabricated by using a locally identified Bacillus strain RNT1, while HGNPs were produced chemically followed by the confirmation and characterization of both NPs through nanomaterials characterization techniques. Results of FTIR and XRD showed the capping of NPs by different functional groups together with their crystalline structure, respectively. SEM and TEM analysis showed the spherical shape along with the particle size ranging from 18 to 94?nm of both NPs, while EDS analysis confirmed the elemental purity of NPs. The results revealed that IONPs-treated rice plants increased biomass, antioxidant enzyme contents, photosynthesis efficiency, nutrient acquisition together with the decrease in reactive oxygen species and acropetal Cd translocation under normal and drought stress conditions as compared with control plants. Furthermore, the expression of the Cd transporter genes, OsHMA2, OsHMA3 and OsLCT1 were curtailed in NPs-treated rice plants under normal and drought stress conditions. The overall significance of the study lies in devising the NPs-based solutions of increasing heavy metal pollution and water availability challenges being faced the farmers around the world.

» Author: Temoor Ahmed, Muhammad Noman, Natasha Manzoor, Muhammad Shahid, Muhammad Abdullah, Liaqat Ali, Gang Wang, Abeer Hashem, Al-Bandari Fahad Al-Arjani, Abdulaziz A. Alqarawi, Elsayed Fathi Abd_Allah, Bin Li
» Publication Date: 01/02/2021
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
