AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
A developed energy-dependent model for studying thermal shock damage and phase transition of composite reinforced panel subjected to lightning strike
Lightning strikes generate large amounts of energy. Thus, composite structures subjected to lightning strikes undergo significant physicochemical changes. In this study, the thermal shock damage and three-phase transition of a composite reinforced panel were investigated through a numerical simulation, an experiment, and ultrasonic C-scanning. An anisotropic constitutive model and PUFF equation of state (EOS) were proposed to study the damage behaviors of composite materials. The dynamical damage behaviors and three-phase transition of the composite reinforced panel were simulated using the proposed constitutive model and PUFF EOS. Finally, a lightning experiment and ultrasonic C-scanning were conducted to validate the numerical results. Obvious fiber upwarping and swelling were observed in the numerical simulation. The melted and vaporized materials caused a reverse thermal shock effect, which led to concave pits, buckling and internal damages in the composite reinforced panel. The numerical results were compared with experimental results and scanning results to validate that the proposed constitutive model and modified PUFF EOS can be well used to simulate the dynamical damage behaviors of composite materials. The simulated damage behaviors of the composite reinforced panel agreed well with the behaviors observed in the experiment.
» Author: Senqing Jia, Fusheng Wang, Bin Xu, Wuzhu Yan
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es