AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Ordered long polyvinyl alcohol fiber-reinforced thermoplastic starch composite having comparable mechanical properties with polyethylene and polypropylene
A novel strategy is proposed to fabricate ordered long polyvinyl alcohol fiber (PVAF)-reinforced thermoplastic starch (TPS) composites with significantly improved mechanical properties. The PVAFs were uniformly fixed on two rods first; then sandwich-like TPS/fibers/TPS composite films were prepared by hot pressing, and PVAFs (0?4.08?wt%) with the same orientation were added to the composite films. The tensile test demonstrated that the tensile strength of the PVAF/TPS composite film improved from 2.13?MPa for TPS to 20.98?MPa with 4.08?wt% PVAFs, which is higher than the tensile strength of polyethylene (PE) (11.88?MPa) and polypropylene (PP) (19.29?MPa) and ten times higher than that of TPS. The sandwich-like cross-section of the composite film was observed by scanning electron microscopy to prove the better compatibility between PVAF and TPS. The nanoindentation test revealed that the addition of fibers improved the elastic modulus and hardness of the surface of the material. The strengthening mechanism for different PVAF contents was simulated by finite element analysis and attributed to the reduced maximum von Mises stress at the interface between the fiber and the TPS matrix, avoiding the stress concentration and corresponding fracture. This study provides a new way to prepare degradable composite films with suitable mechanical properties to replace PE or PP.
» Author: Wen Zhou, Dongdong Zha, Xin Zhang, Jie Xu, Bin Guo, Yanan Huang
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es