
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Identification of key odorants in honeysuckle by headspace-solid phase microextraction and solvent-assisted flavour evaporation with gas chromatography-mass spectrometry and gas chromatograph-olfactometry in combination with chemometrics
At present, the identification of honeysuckle aroma depends on experienced tasters, which results in inconsistencies due to human error. The key odorants have the potential to distinguish the different species and evaluate the quality of honeysuckle. Hence, in this study, a more scientific approach was applied to distinguish various honeysuckles. The volatile compounds of different species and parts of honeysuckle were separately extracted by headspace-solid phase microextraction (HS-SPME) and solvent assisted flavor evaporation (SAFE). Compounds with greater volatility such as aldehydes, limonene, ?-terpinene, and terpinolene were preferentially extracted by HS-SPME. As a complementary extraction method to HS-SPME, SAFE was found to recover comparatively more polar compounds such as eugenol, decanoic acid, and vanillin. Subsequently, key odorants with the highest flavour dilution (FD) factors were detected by aroma extract dilution analysis (AEDA). These were benzaldehyde, 4-ethylphenol, decanoic acid, vanillin, 3-methyl-2-butenal, and ?-ionone in honeysuckle flowers and ?-octalactone, 4-ethyl phenol, and vanillin in honeysuckle stem. Finally, principal component analysis (PCA) was conducted to analyze not only the key odorants of species and parts of honeysuckle but also their different origins. The results of PCA suggested that the species of honeysuckle contributed much more to variations in aroma rather than their origins. In conclusion, the application of the key odorants combined with PCA was demonstrated as a valid approach to differentiate species, origins, and parts of honeysuckle.

» Author: Keran Su, Xin Zhang, Shao Quan Liu, LiHui Jia, Benjamin Lassabliere, Kim Huey Ee, Aileen Pua, Rui Min Vivian Goh, Jingcan Sun, Bin Yu
» Reference: https://doi.org/10.1371/journal.pone.0237881
» Publication Date: 20/08/2020
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
