AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Electronic transport properties of graphene with Stone-Wales defects and multiple vacancy chains: a theoretical study
Recent advances in controlled synthesis of graphene nanodevices urge the understanding of various defects? effect on the electronic transport properties, such as Stone-Wales defects, single vacancy, double vacancies and multiple vacancy chains. In this work, we systematically investigated these defects in single-layer graphene, by using first principle calculations combined with the non-equilibrium Green?s function method. The calculated current-voltage curves reveal that these defects can lead to current decrease compared with pristine graphene. Besides, corresponding transmission spectra and device density of states indicate that some defect induced electron states can strongly enhance the transport of electron between electrodes at certain energy levels, while others are only localized around the defect sites. Moreover, the distinct results of graphene with multiple vacancy chains demonstrate that both the number and arrangement of vacancy defects could affect the electronic transport properties of graphene nanodevices. We also verified that these vacancy defects could be easily identified by using a small source-drain voltage and sweeping the gate voltage applied on the graphene field effect transistors. These results are helpful to further understand vacancy defects? impact on the transport properties of graphene nanodevices, and inspiring to tune the electronic behaviors of two-dimensional nanodevices through controlled defect engineering modifications.
» Author: Hao Wang, Yihan Wang, Bin Bai, Xun Guo, Jianming Xue
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es