
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Electronic transport properties of graphene with Stone-Wales defects and multiple vacancy chains: a theoretical study
Recent advances in controlled synthesis of graphene nanodevices urge the understanding of various defects? effect on the electronic transport properties, such as Stone-Wales defects, single vacancy, double vacancies and multiple vacancy chains. In this work, we systematically investigated these defects in single-layer graphene, by using first principle calculations combined with the non-equilibrium Green?s function method. The calculated current-voltage curves reveal that these defects can lead to current decrease compared with pristine graphene. Besides, corresponding transmission spectra and device density of states indicate that some defect induced electron states can strongly enhance the transport of electron between electrodes at certain energy levels, while others are only localized around the defect sites. Moreover, the distinct results of graphene with multiple vacancy chains demonstrate that both the number and arrangement of vacancy defects could affect the electronic transport properties of graphene nanodevices. We also verified that these vacancy defects could be easily identified by using a small source-drain voltage and sweeping the gate voltage applied on the graphene field effect transistors. These results are helpful to further understand vacancy defects? impact on the transport properties of graphene nanodevices, and inspiring to tune the electronic behaviors of two-dimensional nanodevices through controlled defect engineering modifications.

» Author: Hao Wang, Yihan Wang, Bin Bai, Xun Guo, Jianming Xue
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
