AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Phenotype microarrays reveal metabolic dysregulations of neurospheres derived from embryonic Ts1Cje mouse model of Down syndrome
Down syndrome (DS), is the most common cause of intellectual disability, and is characterized by defective neurogenesis during perinatal development. To identify metabolic aberrations in early neurogenesis, we profiled neurospheres derived from the embryonic brain of Ts1Cje, a mouse model of Down syndrome. High-throughput phenotypic microarray revealed a significant decrease in utilisation of 17 out of 367 substrates and significantly higher utilisation of 6 substrates in the Ts1Cje neurospheres compared to controls. Specifically, Ts1Cje neurospheres were less efficient in the utilisation of glucose-6-phosphate suggesting a dysregulation in the energy-producing pathway. T Cje neurospheres were significantly smaller in diameter than the controls. Subsequent preliminary study on supplementation with 6-phosphogluconic acid, an intermediate of glucose-6-phosphate metabolism, was able to rescue the Ts1Cje neurosphere size. This study confirmed the perturbed pentose phosphate pathway, contributing to defects observed in Ts1Cje neurospheres. We show for the first time that this comprehensive energetic assay platform facilitates the metabolic characterisation of Ts1Cje cells and confirmed their distinguishable metabolic profiles compared to the controls.
» Author: Eryse Amira Seth, Han-Chung Lee, Hadri Hadi bin Md Yusof, Norshariza Nordin, Yoke Kqueen Cheah, Eric Tatt Wei Ho, King-Hwa Ling, Pike-See Cheah
» Reference: https://doi.org/10.1371/journal.pone.0236826
» Publication Date: 30/07/2020
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es