In this section, you can access to the latest technical information related to the FUTURE project topic.

Influence of Interactions among Polymeric Components of Automobile Shredder Residue on the Pyrolysis Temperature and Characterization of Pyrolytic Products

Pyrolysis and gasification have gradually become the main means to dispose of automobile shredder residue (ASR), since these methods can reduce the volume and quality of landfill with lower cost and energy recovery can be conducted simultaneously. As the ASR pyrolysis process is integrated, the results of pyrolysis reactions of organic components and the interaction among polymeric components can be clarified by co-pyrolysis thermogravimetric experiments. The results show that the decomposition mechanisms of textiles and foam are markedly changed by plastic in the co-pyrolysis process, but the effect is not large for rubber and leather. This effect is mainly reflected in the pyrolysis temperature and pyrolysis rate. The pyrolytic trend and conversion curve shape of the studied ASR can be predicted by the main polymeric components with a parallel superposition model. The pyrolytic product yields and characterizations of gaseous products were analyzed in laboratory-scale non-isothermal pyrolysis experiments at finished temperatures of 500 °C, 600 °C, and 700 °C. The results prove that the yields of pyrolytic gas products are determined by the thermal decomposition of organic substances in the ASR and final temperature.

» Author: Bin Yang

» Reference: doi: 10.3390/polym12081682

» Publication Date: 28/07/2020

» More Information

« Go to Technological Watch



AIMPLAS Instituto Tecnológico del Plástico

C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN

PHONE

(+34) 96 136 60 40

EMAIL

Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es