
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Legacy and emerging organophosphorus flame retardants and plasticizers in indoor microenvironments from Guangzhou, South China
Indoor dust has been extensively used for assessment of indoor contamination, especially for semi-volatile organic compounds (SVOCs). In the present study, the occurrence of four groups of SVOCs, i.e. organophosphorus flame retardants (PFRs), emerging PFRs (ePFRs), legacy phthalates (LPs), and alternative plasticizers (APs), was investigated in the indoor dust and air collected from floors, table surfaces, windows, and air conditioner (A/C) filters in bedrooms and offices in Guangzhou, South China. In bedrooms, A/C filter dust showed the highest median concentrations of PFRs (4670?ng/g) and ePFRs (586?ng/g), whilst the highest median concentrations of LPs and APs were found in floor (240,880?ng/g) and window dust (157,160?ng/g), respectively. In offices, A/C filter dust showed the highest median concentrations for PFRs (6750?ng/g) and APs (504,520?ng/g), while the highest ePFR median level was found in PC table dust (5810?ng/g) and LPs in floor dust (296,270?ng/g). Median air concentrations of PFRs, ePFRs, LPs, and APs were measured at 4.6, 0.12, 399, and 25?ng/m3 in bedrooms, and at 8.0, 0.05, 332, and 43?ng/m3 in offices, respectively. Tris(1-chloro-iso-propyl) phosphate (TCIPP) was the predominant PFRs/ePFRs in both dust and air. Di(2-ethylhexyl) phthalate (DEHP), di-iso-decyl phthalate (DIDP) and di-iso-nonyl phthalate (DINP) were the main LP/AP compounds in dust, whilst di-iso-butyl phthalate (DIBP) and di-n-butyl phthalate (DNBP) were the most abundant LPs/APs in air. A significant correlation (p?

» Author: Bin Tang, Christina Christia, Govindan Malarvannan, Yin-E. Liu, Xiao-Jun Luo, Adrian Covaci, Bi-Xian Mai, Giulia Poma
» Publication Date: 01/10/2020
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
