AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Synthesis and structural properties of Mo-S-N sputtered coatings
Transition-metal-dichalcogenide coatings provide low friction because of characteristic low shear strength along the basal plane of the lamellar structure; however, the material can easily degrade through exfoliation and poor adhesion to the metallic substrates. In this work, an innovative approach was employed to improve the coating?s adhesion. A secondary plasma source was used during deposition to generate an additional charged particle flux which was directed to the growing film independently of the magnetron cathode. Therefore, Mo-S-N solid lubricant films were deposited by DCMS from a single molybdenum disulphide (MoS2) target in a reactive atmosphere. Nitrogen was introduced during the deposition with increasing partial pressures, resulting in a high N2 content in the doped films (37?at. %). The variation in incident ion energy and flux of energetic species bombarding the growing film allows for the control of the S/Mo ratio through selective re-sputtering of sulphur from the film. The S/Mo ratio was progressively increased in the range of 1.2?1.8, resulting in a gradient from a metallic layer to the lubricious sulphide. Combining the ion bombardment with nitrogen incorporation, the cohesive critical load (Lc1) reached 38?N, 10 times more when compared to pure MoS2 coating. Observation using HRTEM revealed an amorphous structure and strong bonding with the substrate.
» Author: Kaushik Hebbar Kannur, Talha Bin Yaqub, Teodor Huminiuc, Tomas Polcar, Christophe Pupier, Christophe H?au, Albano Cavaleiro
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es