
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Epoxy nanocomposites with high thermal conductivity and low loss factor: Realize 3D thermal conductivity network at low content through core-shell structure and micro-nano technology
Dielectric polymers with high thermal conductivity are very promising in the fields of aerospace and electronic device packaging. However, composites with excellent dielectric properties usually have low thermal conductivity. It is usually to fill the polymer with thermal conductivity particles to improve the thermal conductivity, but the high content of filler often reduces the mechanical properties of the polymer. In this paper, the traditional insulating polymer epoxy resin was used as the matrix, by covering the surface of silicon carbide with graphene to form a core-shell structure and co-filled with nano diamonds to achieve the preparation of high-performance epoxy resin at low content. The results showed that at the filling content of 30?wt%, the thermal conductivity of epoxy nanocomposites showed a dramatic thermal conductivity enhancement of 1263%, the energy storage modulus increased by 1.1?GPa, and the dielectric loss remained unchanged at 50?Hz. The advantages of the composite are the structural design and surface modification of the filler, which not only take advantage of its inherent advantages, but also improve the interface area with the epoxy matrix. The composite materials with excellent properties are expected to provide theoretical guidance for the application of high thermal conductivity dielectric materials.

» Author: Rui Wang, Congzhen Xie, Bin Gou, Huasong Xu, Shoukang Luo, Jiangang Zhou, Leilei Zeng
» Publication Date: 01/09/2020
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
