
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Energetic metal-organic frameworks deflagration enabled ultrafast low-temperature synthesis of ultra-light magnetic nanoparticles decorated high-lossy materials
Magnetic/dielectric nanocomposites featuring strong electromagnetic wave response are ideal materials for microwave absorbing, due to their high dissipation capability and optimized impedance matching. However, it is still a challenge to synthesize such nanocomposites due to the drawbacks of conventional fabrication approaches, such as considerable time consumption, high-power dissipation, low efficiency as well as insufficient contact. Here, an ultrafast energetic metal-organic framework (EMOF) deflagration methodology was proposed to transform EMOF nanoparticles to magnetic nanoparticles and simultaneously convert graphene oxide to reduced graphene oxide (RGO) by utilizing the huge heat release via one-step pyrolysis. The obtained absorbers exhibit remarkable microwave response capability at an ultra-low loading content, which verifies the practicability and advantages of this synthetic approach. Moreover, this work opens up potential opportunities for EMOFs applications in a wide range and expands the future materials design scopes.

» Author: Yousong Liu, Bin Quan, Xiaohui Liang, Bing Huang, Shiliang Huang, Xiaodong Li, Guangbin Ji, Zhong Jin, Guangcheng Yang
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
